
2026/02/04 04:25 1/4 Programmation des Ports sur Arduino

Castel'Lab le Fablab MJC de Château-Renault - https://magenealogie.chanterie37.fr/www/fablab37110/

Programmation des Ports sur Arduino

La doc sur les Ports du Blog Eskimon

La Doc de référence Arduino

Registres de port

Les registres de port permettent une manipulation de niveau inférieur et plus rapide des broches d'E /
S du microcontrôleur sur une carte Arduino. Les puces utilisées sur la carte Arduino (les ATmega8 et
ATmega168) ont trois ports:

 B (broche numérique 8 à 13)
 C (broches d'entrée analogiques)
 D (broches numériques 0 à 7)

Chaque port est contrôlé par trois registres, qui sont également des variables définies dans le langage
Arduino. Le registre DDR détermine si la broche est une entrée ou une sortie. Le registre PORT
contrôle si la broche est HIGH ou LOW, et le registre PIN lit l'état des broches INPUT configurées pour
entrer avec pinMode (). Les cartes des puces ATmega8 et ATmega168 montrent les ports. La nouvelle
puce Atmega328p suit exactement le brochage de l'Atmega168.

Les registres DDR et PORT peuvent être à la fois écrits et lus. Les registres PIN correspondent à l'état
des entrées et ne peuvent être lus.

PORTD mappe sur les broches numériques Arduino 0 à 7

 DDRD - Le registre de direction des données du port D - lecture / écriture
 PORTD - Le registre de données du port D - lecture / écriture
 PIND - Le registre des broches d'entrée du port D - lecture seule

PORTB correspond aux broches numériques Arduino 8 à 13 Les deux bits hauts (6 et 7) correspondent
aux broches en cristal et ne sont pas utilisables

https://eskimon.fr/tuto-arduino-904-les-ports

Last update: 2023/01/27 16:08 start:arduino:ports https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:arduino:ports

https://magenealogie.chanterie37.fr/www/fablab37110/ Printed on 2026/02/04 04:25

 DDRB - Le registre de direction des données du port B - lecture / écriture
 PORTB - Le registre de données du port B - lecture / écriture
 PINB - Le registre des broches d'entrée du port B - lecture seule

PORTC correspond aux broches analogiques Arduino 0 à 5. Les broches 6 et 7 ne sont accessibles que
sur l'Arduino Mini

 DDRC - Le registre de direction des données du port C - lecture / écriture
 PORTC - Le registre de données du port C - lecture / écriture
 PINC - Le registre des broches d'entrée du port C - lecture seule

Chaque bit de ces registres correspond à une seule broche; Par exemple, le bit faible de DDRB,
PORTB et PINB fait référence à la broche PB0 (broche numérique 8). Pour un mappage complet des
numéros de broches Arduino aux ports et aux bits, consultez le diagramme de votre puce: ATmega8 ,
ATmega168 . (Notez que certains bits d'un port peuvent être utilisés pour des choses autres que les
entrées / sorties; faites attention de ne pas changer les valeurs des bits de registre qui leur
correspondent.) Exemples

En se référant à la carte des broches ci-dessus, les registres PortD contrôlent les broches numériques
Arduino 0 à 7.

Vous devez cependant noter que les broches 0 et 1 sont utilisées pour les communications série pour
la programmation et le débogage de l'Arduino, donc le changement de ces broches doit généralement
être évité sauf si nécessaire pour les fonctions d'entrée ou de sortie série. Sachez que cela peut
interférer avec le téléchargement ou le débogage du programme.

 DDRD est le registre de direction pour le port D (broches numériques
Arduino 0-7). Les bits de ce registre contrôlent si les broches de
 PORTD sont configurées comme entrées ou sorties, par exemple:

 DDRD = B11111110; // définit les broches Arduino 1 à 7 comme sorties, la
broche 0 comme entrée
 DDRD = DDRD | B11111100; // c'est plus sûr car il définit les broches 2 à
7 comme sorties
 // sans changer la valeur des broches 0 & 1, qui sont RX &
TX

See the bitwise operators reference pages and Le didacticiel Bitmath dans le Playground PORTD est le
registre de l'état des sorties. Par exemple; PORTD = B10101000; sets digital pins 7,5,3 HIGH

Vous ne verrez cependant que 5 volts sur ces broches si les broches ont été définies comme sorties
en utilisant le registre DDRD ou avec pinMode ().

PIND est la variable du registre d'entrée. Il lira toutes les broches d'entrée numériques en même
temps. Pourquoi utiliser la manipulation de port?

À partir du didacticiel Bitmath

De manière générale, faire ce genre de chose n'est pas une bonne idée. Pourquoi pas? Voici quelques
raisons:

2026/02/04 04:25 3/4 Programmation des Ports sur Arduino

Castel'Lab le Fablab MJC de Château-Renault - https://magenealogie.chanterie37.fr/www/fablab37110/

Le code est beaucoup plus difficile à déboguer et à maintenir, et il est beaucoup plus difficile à
comprendre pour les autres. Le processeur ne prend que quelques microsecondes pour exécuter le
code, mais cela peut vous prendre des heures pour comprendre pourquoi cela ne fonctionne pas
correctement et le réparer! Votre temps est précieux, non? Mais le temps de l'ordinateur est très bon
marché, mesuré par le coût de l'électricité que vous l'alimentez. Il est généralement préférable
d'écrire du code de la manière la plus évidente.

Le code est moins portable. Si vous utilisez digitalRead () et digitalWrite (), il est beaucoup plus facile
d'écrire du code qui fonctionnera sur tous les microcontrôleurs Atmel, alors que les registres de
contrôle et de port peuvent être différents sur chaque type de microcontrôleur.

Il est beaucoup plus facile de provoquer des dysfonctionnements involontaires avec un accès direct
au port. Remarquez comment la ligne DDRD = B11111110; ci-dessus mentionne qu'il doit laisser la
broche 0 comme broche d'entrée. La broche 0 est la ligne de réception (RX) sur le port série. Il serait
très facile de provoquer accidentellement l'arrêt de votre port série en changeant la broche 0 en une
broche de sortie! Maintenant, ce serait très déroutant lorsque vous êtes soudainement incapable de
recevoir des données série, n'est-ce pas?

Alors vous vous dites peut-être, génial, pourquoi aurais-je envie d'utiliser ce truc alors? Voici
quelques-uns des aspects positifs de l'accès direct au port:

Vous devrez peut-être pouvoir activer et désactiver les broches très rapidement, c'est-à-dire en
quelques fractions de microseconde. Si vous regardez le code source dans lib / cibles / arduino /
câblage.c, vous verrez que digitalRead () et digitalWrite () sont chacun environ une douzaine de lignes
de code, qui sont compilées en quelques instructions machine. Chaque instruction machine nécessite
un cycle d'horloge à 16 MHz, ce qui peut s'additionner dans les applications sensibles au temps.
L'accès direct au port peut faire le même travail en beaucoup moins de cycles d'horloge.

Parfois, vous devrez peut-être définir plusieurs broches de sortie exactement en même temps. Appel
digitalWrite (10, HIGH); suivi de digitalWrite (11, HIGH); fera passer la broche 10 à l'état HAUT
plusieurs microsecondes avant la broche 11, ce qui peut perturber certains circuits numériques
externes sensibles au temps que vous avez connectés. Vous pouvez également régler les deux
broches à un niveau élevé exactement au même moment en utilisant PORTB | = B1100;

Si vous manquez de mémoire programme, vous pouvez utiliser ces astuces pour réduire la taille de
votre code. Il faut beaucoup moins d'octets de code compilé pour écrire simultanément un tas de
broches matérielles simultanément via les registres de port que d'utiliser une boucle for pour définir
chaque broche séparément. Dans certains cas, cela peut faire la différence entre l'adaptation de votre
programme dans la mémoire flash ou non!

Exemple de programme Arduino UNO pour faire clignoter 2
LEDS

2 LEDS branchées sur les broches: LED1 = - sur 2 et cmd+ sur 3 , LED2 = - sur 6 cmd+ sur 7

ports_Leds.ino

void setup() {

https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:arduino:ports&codeblock=0

Last update: 2023/01/27 16:08 start:arduino:ports https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:arduino:ports

https://magenealogie.chanterie37.fr/www/fablab37110/ Printed on 2026/02/04 04:25

 // On positionne en sortie OUTPUT (1) les broches 2 à 7 sur
les bits 2 à 7 ,
 // On part de la droite vers la gauche pour lire les n° des bits
donc des broches.
 DDRD = B11111110; // ATTENTION le bit 0 = 0 et le bit 1 = 1 sinon
pas de liaison série!!!
 // Le B majuscule en début de séquence indique un nombre Binaire
}

void loop(){

 // on met du 5 volts ou à 1 (HIGH) les broches 3 et 7 on allume les
2 LEDS
 PORTD = B10001000; // toujours 0 sur les bits 0 et 1 ==> liaison
série...
 delay(1000); // on attend 1s
 PORTD = B00000000; // On eteind les 2 LEDS
 delay(1000); // attente 1s

}

Autres Methodes

bitRead(x, n); bitRead() permet de lire l'état d'un bit dans un nombre entier.
bitWrite(x, n, b); bitWrite() permet d'écrire l'état d'un bit dans un nombre entier.
bitSet(x, n); bitSet() permet de mettre un bit à “1” dans un nombre entier.
bitClear(x, n); bitClear() permet de mettre un bit à “0” dans un nombre entier.
bit(n);bit() permet de retourner la valeur numérique correspondant au poids d'un bit :

https://www.carnetdumaker.net/articles/quelques-fonctions-bien-pratiques-du-framework-arduin
o/

From:
https://magenealogie.chanterie37.fr/www/fablab37110/ - Castel'Lab le Fablab MJC de Château-
Renault

Permanent link:
https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:arduino:ports

Last update: 2023/01/27 16:08

https://www.carnetdumaker.net/articles/quelques-fonctions-bien-pratiques-du-framework-arduino/
https://www.carnetdumaker.net/articles/quelques-fonctions-bien-pratiques-du-framework-arduino/
https://magenealogie.chanterie37.fr/www/fablab37110/
https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:arduino:ports

	Programmation des Ports sur Arduino
	La Doc de référence Arduino
	Registres de port

	Exemple de programme Arduino UNO pour faire clignoter 2 LEDS
	Autres Methodes

