2026/02/04 17:47

1/11

Connexion RPI et ESP32 via UART

Connexion RPI et ESP32 via UART

Pour connecter un Raspberry Pi 4 a un ESP32 en utilisant le protocole UART (série), voici les étapes

détaillées :

Matériel nécessaire :

- Raspberry Pi 4 - ESP32 - Cables de connexion (Dupont) - Optionnel : Résistances (si nécessaire pour

les niveaux de tension)

Connexion physique :

wand W

GPIO2 (SDA1)

GPIO3 (SCL1)

GPI04 (GPIO_GCLK)
GND

GPIO17 (GPIO_GEND)
GPIO27 (GPIO_GEN2)
GPIO22 (GPIO_GEN3)

GPIO10 (SPI0_MOSI)
GPIOS (SPI0_MISO)
GPIO11 (SPID_CLK)

GND

ID_SD (12C EEPROM)

GPIOS
GPIO6
GPIO13
GPIO19
GPIO26
GND

sV
5V
GND

GPIO14 (UART_TXDO)
GPIO15 (UART_RXDO)

GPIO18 (GPIO_GEN1)
GND

GPI023 (GPIO_GEN4)
GPIO24 (GPIO_GEN$)
GND

GPIO25 (GPIO_GENG)
GPIO8 (SPI_CED_MN)
GPIOT (SPI_CE1_N)
ID_SC (12C EEPROM)
GND

GPIO12

GND

GPIO16

GPI020

GPIO21

Castel'Lab le Fablab MJC de Chateau-Renault - https://magenealogie.chanterie37.fr/www/fablab37110/



Last

;82;;8:2/23 start:raspberry:uart:uarttoesp32 https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740342672

21:31

ESP32 Wroom DevKit Full Pinout

® @
33 (o) o
RESTART/ EN o] (o ET VSPI_MOST
= GPIO36, O O
s GPIOZD O 0
Lol GPI034 O 0
ADC1_ 7 8] O
TOUCH 3 ADC1 4 (o) O Gl
TOUCH 8 ADCL S O lo]-"\ {THTHE] VSPI_MISO
JPSECRTY ADC2_8 0 (o] [(FORET WSRI_CLK
JUDECZZ anc2_a O (o] GPI0G T e
/TOUCH 7 ADC2_7 s (] GPI017 R p*]
_ m_m _m*.‘ O 0 [T RX2
| /SBLDATZ] HSPI_MISO (TOUCH S ADC2_5 GPI012 WA O o GPI04 ADC2 B TOUCH @ /SDUDATIY
GND o o GP108 ADCZ_1 TOUCH 1
| (SDLDATS HSPI_MOSI TOUCH 4 ADC2_4 GPIOL3 o] (o] GP102 ADC2_2 TOUCH_2 /SOLDATS) ACESHNY
B = © O eriols ADC2_3 TOUCH_3 [SDLCHB  HSP1_CS
Do not Connect [used by internal Flash] | SWE/S03 O O J S0 /501
CSC/CMD o 0 SDO/SD8 Do not Connett [used by internal Flash)
D o SCK/CLE
&—— Input only ® PS

®—— Input / Output

24SPI:VSPT & HSPT 2xADC:ADCL & ADC2
~\— PLIM Cutput TOUCH SENSOR.
GPID pins are not 5V tolerant

12€ AT /S0 uART

Raspberry Pi 4 - ESP32:

e Raspberry Pi 4 :
o GPIO 14 (TX) » ESP32 GPIO 16 (RX) (Transmission du Raspberry Pi vers I'ESP32)
UART(2)
o GPIO 15 (RX) - ESP32 GPIO 17 (TX) (Réception du Raspberry Pi depuis I'ESP32)
UART(2)

ou

e GPIO 14 (TX) » ESP32 GPIO 25 (RX) (Transmission du Raspberry Pi vers I'ESP32) UART(1)
e GPIO 15 (RX) -» ESP32 GPIO 26 (TX) (Réception du Raspberry Pi depuis I'ESP32) UART(1)

¢ Alimentation :

e 3.3V (Raspberry Pi 4) » 3.3V (ESP32) (L'ESP32 fonctionne en 3.3V, évitez le 5V)
e GND -» GND

https://magenealogie.chanterie37.fr/www/fablab37110/ Printed on 2026/02/04 17:47



2026/02/04 17:47 3/11 Connexion RPI et ESP32 via UART

=) (=

Important :

1. Vous devez connecter TX a RX et RX a TX.

2. Le Raspberry Pi utilise un niveau logique de 3.3V, donc assurez-vous que I'ESP32 soit alimenté
en 3.3V également. Si vous branchez un cable GPIO directement a un autre périphérique qui
fonctionne a 5V (par exemple, certaines cartes Arduino), vous risquez d'endommager les
broches.

Configuration sur le Raspberry Pi (UART Master) :
1. Activer le port série :

1. Par défaut, le port série du Raspberry Pi est réservé a la console. Vous devez le libérer pour
I'utiliser pour la communication série.

- Ouvrez une terminal et tapez :

exemple003.sh

Castel'Lab le Fablab MJC de Chateau-Renault - https://magenealogie.chanterie37.fr/www/fablab37110/


https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=0

Last
update:
2025/02/23
21:31

start:raspberry:uart:uarttoesp32 https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740342672

sudo raspi-config

1. Allez dans “Interfacing Options” puis “Serial”. Désactivez I'acces a la console série et
activez l'interface série.
2. Redémarrez le Raspberry Pi.

2. Vérifiez que le port série fonctionne :

1. Une fois le port série activé, vous pouvez vérifier si le périphérique série est détecté. Tapez la
commande suivante pour vérifier :

exemple004.sh

1s /dev/ttyAMA

Vous devriez voir quelque chose comme " /dev/ttyAMAOQ".
3. Installer les outils de communication série (si nécessaire) :

Si vous souhaitez envoyer et recevoir des données en ligne de commande, installez minicom ou
screen :

exemple005.sh

sudo apt-get install minicom

4. Testez la connexion série avec "minicom’ :

1. Utilisez minicom pour tester la communication série en vous connectant au port */dev/ttyAMAQO

exemple006.sh

minicom -b -0 -D /dev/ttyAMAO

Ctrl + A et ensuite X pour sortir de minicom : Ctrl + A et ensuite Z pour I'Aide : CTRL +
A et ensuite O pour configurer minicom

Remarque : Changez le port si nécessaire (en fonction de la sortie de "Is
/dev/ttyAMAQO").

https://magenealogie.chanterie37.fr/www/fablab37110/ Printed on 2026/02/04 17:47


https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=1
https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=2
https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=3

2026/02/04 17:47 5/11 Connexion RPI et ESP32 via UART

Configuration sur I'**ESP32** (UART Slave) :

1. Utiliser I'IDE Arduino pour programmer I'ESP32 :

1. Si vous n'avez pas encore installé le support pour I'ESP32 dans I'IDE Arduino, allez dans "Outils’
- “Carte” - Sélectionnez votre modele ESP32.

2. Assurez-vous que vous avez installé le paquet ESP32 dans le Gestionnaire de cartes de I'IDE
Arduino.

2. Code pour I'ESP32 (réception et envoi UART) :

-1-Voici un exemple de code pour configurer I'ESP32 pour communiquer via UART(2) :

exemplell.ino

#define RXD2 16
#define TXD2 17

#define GPS BAUDS 115200
HardwareSerial mySerial2
int counter

void setup
Serial.begin
mySerial2.begin(GPS_BAUDS, SERIAL 8N1, RXD2, TXD2
Serial.println("Serial 2 demarre en 115200 Bds"

void loop
mySerial2.available
char gpsDatal = mySerial2.read
Serial.print(gpsDatal

delay

Serial.println (M ----cmmmm i !
mySerial2.println(String(counter

Serial.println("Envoie UART2: " String(counter

counter

delay

Ce code permet a I'ESP32 de lire les caracteres envoyés par le Raspberry Pi et de répondre avec un
message.

Castel'Lab le Fablab MJC de Chateau-Renault - https://magenealogie.chanterie37.fr/www/fablab37110/


https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=4

Last
update:
2025/02/23
21:31

start:raspberry:uart:uarttoesp32 https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740342672

-2- Voici un exemple de code pour configurer I'ESP32 pour communiquer via UART(1) :

exemplel2.ino

#define RXD1 25
#define TXD1 26

#define GPS BAUDS 115200
HardwareSerial mySeriall
int counter

void setup
Serial.begin
mySeriall.begin(GPS_BAUDS, SERIAL 8N1, RXD1l, TXD1
Serial.println("Serial 1 25R 26T demarre en 115200 Bds"

void loop
mySeriall.available
char gpsData2 mySeriall.read
Serial.print(gpsData2

delay

Serial.println (M ----cmmmm e .
mySeriall.println(String(counter

Serial.println("Envoie UART1: " String(counter

counter

delay

Ce code permet a I'ESP32 de lire les caracteres envoyés par le Raspberry Pi et de répondre avec un
message.

Code pour I"ESPM qui recoit sur 'UART1 le RPI et I'UART2 I'ESPE

https://magenealogie.chanterie37.fr/www/fablab37110/ Printed on 2026/02/04 17:47


https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=5

2026/02/04 17:47 7/11 Connexion RPI et ESP32 via UART

exemplel4.ino

#define RXD1 25
#define TXD1 26
#define RXD2 16
#define TXD2 17

#define GPS BAUDS 115200

mySeriall.println(String(counter
Serial.println("Envoie UART1l: " String(counter

HardwareSerial mySeriall(l

HardwareSerial mySerial2(2

int counter 0

void setup
Serial.begin (115200
mySeriall.begin(GPS_BAUDS, SERIAL 8N1, RXD1l, TXD1
Serial.println("Serial 1 25R 26T demarre en 115200 Bds"
mySerial2.begin(GPS _BAUDS, SERIAL 8N1, RXD2, TXD2
Serial.println("Serial 2 16R 17T demarre en 115200 Bds"

void loop
while (mySeriall.available 0
char gpsDatal = mySeriall.read
Serial.print(gpsDatal

while (mySerial2.available 0
char gpsData2 = mySerial2.read
Serial.print(gpsData2

delay (2000

Serial.println("------cmm i !
mySeriall.println(String(counter

Serial.println("Envoie UART1l: " String(counter
mySerial2.println(String(counter

Castel'Lab le Fablab MJC de Chateau-Renault - https://magenealogie.chanterie37.fr/www/fablab37110/


https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=6

Last
update:
2025/02/23
21:31

start:raspberry:uart:uarttoesp32 https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740342672

Serial.println("Envoie UART2: " String(counter
counter
delay

Code pour test sur ESP32E

exemplel5.ino

#define RXD2 16
#define TXD2 17

#define GPS BAUDS 115200
HardwareSerial mySerial2
int counter

void setup
Serial.begin
mySerial2.begin(GPS BAUDS, SERIAL 8N1, RXD2, TXD2
Serial.println("Serial 2 demarre en 115200 Bds"

void loop
mySerial2.available
char gpsDatal = mySerial2.read
Serial.print(gpsDatal

delay

Serial.println(M-----cmmmm e !
mySerial2.println(String(counter
Serial.println("Envoie UART2: "
counter

delay

String(counter

Etapes sur le **Raspberry Pi** (UART Master) :

1. Code Python pour envoyer/recevoir des données via UART :

Voici un exemple de code Python pour communiquer avec I'ESP32 en utilisant le port série
/dev/ttyAMAO :

https://magenealogie.chanterie37.fr/www/fablab37110/ Printed on 2026/02/04 17:47


https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=7

2026/02/04 17:47 9/11 Connexion RPI et ESP32 via UART

Installer le module pyserial sur raspbery :

exemple007.sh

sudo apt-get install python3-serial

exemple010.py

serial
time

# Configurer le port série pour le Raspberry Pi

ser = serial.Serial('/dev/ttyAMAO', 115200) # Le port série, le méme
que pour Minicom

time.sleep(2) # Attendre que la communication soit stable

# Envoyer un message a l'ESP32
ser.write(b"Hello ESP32!'\n"

"Envoie Hello ESP32!'\n"
# Reception des messages de l'ESP32

True:
ser.in waiting > 0: # Si des données sont recues
received ser.readline().decode('utf-8').strip # Lire et

décoder les données recues de l'ESP32
"Recu de 1'ESP32:", received
time.sleep(1l
# Envoie des messages de l'ESP32
ser.write(b"Hello ESP32!\n"
"Envoie Hello ESP32!\n"

Lancer le programme python sur le raspberry

test001.sh

python3 exemple010.py

Ce script Python envoie un message a I'ESP32 et attend la réponse. Vous pouvez tester la
communication en lisant les réponses dans le

terminal du Raspberry :

Castel'Lab le Fablab MJC de Chateau-Renault - https://magenealogie.chanterie37.fr/www/fablab37110/


https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=8
https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=9
https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?do=export_code&id=start:raspberry:uart:uarttoesp32&codeblock=10

Last
update:
2025/02/23
21:31

start:raspberry:uart:uarttoesp32 https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740342672

Terminal ESP32:

JReCU de -
Envolie Hello du

Envoie Hello du

Envoie Hello du

Envoie Hello du

Recu de 1'ESP32:

Envolie Hello du
Envoie Hello du
Envoie Hello du

Envole Hello du

Recu de 1'ESP32:

Raspberry!
Raspberry!
Raspberry!
Raspberry!

137
Raspberry!

Raspberry!
Raspberry!
Raspberry!

138

https://magenealogie.chanterie37.fr/www/fablab37110/

Printed on 2026/02/04 17:47



2026/02/04 17:47 11/11 Connexion RPI et ESP32 via UART

—_— - _—— e - —_ ——y—— -

:03.701 -> Hello du Raspberry

16:39

16:39:05.720 - ---c-ccmmmm i i m e e oo -
16:39:05.720 -> Envoie: 114
16:39:07.698 -> Hello du Raspberry
16:39:87.730 -> Hello du Raspberry
16:39:87.731 -> Hello du Raspberry
16:39:07.731 -> Hello du Raspberry
16:39:09.716 -3 ----------~"—~—"-~-~~——~—~--
16:39:09.716 -> Envoie: 115
16:39:11.730 -> Hello du Raspberry
16:39:11.730 -> Hello du Raspberry
16:39:11.730 -> Hello du Raspberry
16:39:11.730 -> Hello du Raspberry
16:39:13.708 - ------cmmmmm e a oo - -
16:39:13.708 -> Envoie: 116

Vérification et dépannage :

- Si la communication ne fonctionne pas, assurez-vous que les connexions sont correctes, que le code
est bien téléchargé sur I'ESP32 et que le Raspberry Pi utilise le bon port série. - Si vous avez des
problemes avec le niveau de tension, vous pouvez utiliser un convertisseur logique pour passer du
3.3V a un 5V, mais ce n'est pas nécessaire si vous utilisez 3.3V des deux cotés. - Si vous ne voyez
rien sur le port série (pour le Raspberry Pi), vous pouvez essayer d'utiliser "dmesg | grep tty" pour
voir les messages du systeme concernant les ports série.

Cela devrait vous permettre d'établir une communication UART entre votre Raspberry Pi 4 et votre
ESP32.

From:
https://magenealogie.chanterie37.fr/www/fablab37110/ - Castel'Lab le Fablab MJC de Chateau-Renault

Permanent link:
https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740342672 >3

Last update: 2025/02/23 21:31

Castel'Lab le Fablab MJC de Chateau-Renault - https://magenealogie.chanterie37.fr/www/fablab37110/


https://magenealogie.chanterie37.fr/www/fablab37110/
https://magenealogie.chanterie37.fr/www/fablab37110/doku.php?id=start:raspberry:uart:uarttoesp32&rev=1740342672

	Connexion RPI et ESP32 via UART
	Matériel nécessaire :
	Connexion physique :
	Configuration sur l'**ESP32** (UART Slave) :
	-1-Voici un exemple de code pour configurer l'ESP32 pour communiquer via UART(2) :
	-2- Voici un exemple de code pour configurer l'ESP32 pour communiquer via UART(1) :
	Code pour l"ESPM qui recoit sur l'UART1 le RPI et l'UART2 l'ESPE
	Code pour test sur ESP32E
	Étapes sur le **Raspberry Pi** (UART Master) :
	Lancer le programme python sur le raspberry

	Vérification et dépannage :



